Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electronic structure and optical properties of In2X2O7 (X = Si, Ge, Sn) from direct to indirect gap: An ab initio study

Identifieur interne : 000D69 ( Main/Repository ); précédent : 000D68; suivant : 000D70

Electronic structure and optical properties of In2X2O7 (X = Si, Ge, Sn) from direct to indirect gap: An ab initio study

Auteurs : RBID : Pascal:13-0308386

Descripteurs français

English descriptors

Abstract

Electronic optical properties of In2X2O7 (X = Si, Ge, Sn) compounds were calculated using density functional theory (DFT) calculation based on full potential linear augmented plane wave (FPLAPW). Four schemes LDA, GGA, EVGGA and mBJ were used to solve exchange correlation factor. The calculations of In2X2O7 show that mBJ give better band splitting. The band structure of In2Ge2O7 show an indirect band gap (X → I') of about 3.55 eV while In2Si2O7 and In2Sn2O7 exhibit direct band gap (I' → I') of 5.59 eV and 2.44 eV. The frequency dependent dielectric functions of In2X2O7 compounds show the highest transparency at the infrared (IR) region. The In2Si2O7 and In2Ge2O7 are broad band semiconductors starting from ultraviolet (UV) region while In2Sn2O7 start from visible region. The reflectivity spectra shows that In2X2O7 compounds are suitable for antireflection coating layer in solar cells and filters in far UV region. As In2Si2O7 and In2Sn2O7 are a direct band gap material, that make them suitable for light emitting diodes (LED's). In2Si2O7 is suitable for UV light while In2Sn2O7 is fit to emit green, blue and violet light. The present work provides information about variation of the electronic and optical properties by replacing Si by Ge and by Sn in the pyrochlore oxide which helps to understand the electronic and optical properties of this group of compounds.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0308386

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electronic structure and optical properties of In
<sub>2</sub>
X
<sub>2</sub>
O
<sub>7</sub>
(X = Si, Ge, Sn) from direct to indirect gap: An ab initio study</title>
<author>
<name sortKey="Reshak, A H" uniqKey="Reshak A">A. H. Reshak</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Complex Systems, FFPW. CENAKVA, University of South Bohemia</s1>
<s2>CB, Nove Hrady 37333</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>CB, Nove Hrady 37333</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis</s1>
<s2>01007 Kangar, Perlis</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>01007 Kangar, Perlis</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SALEEM AYAZ KHAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Complex Systems, FFPW. CENAKVA, University of South Bohemia</s1>
<s2>CB, Nove Hrady 37333</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République tchèque</country>
<wicri:noRegion>CB, Nove Hrady 37333</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0308386</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0308386 INIST</idno>
<idno type="RBID">Pascal:13-0308386</idno>
<idno type="wicri:Area/Main/Corpus">000714</idno>
<idno type="wicri:Area/Main/Repository">000D69</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0256</idno>
<title level="j" type="abbreviated">Comput. mater. sci.</title>
<title level="j" type="main">Computational materials science</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>APW calculations</term>
<term>Ab initio calculations</term>
<term>Absorption spectra</term>
<term>Band structure</term>
<term>Density functional method</term>
<term>Dielectric function</term>
<term>Electronic density of states</term>
<term>Energy gap</term>
<term>Indium Germanates</term>
<term>Indium Silicates</term>
<term>Indium Stannates</term>
<term>Local density approximation</term>
<term>Pyrochlore type compound</term>
<term>Semiconductor materials</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Structure bande</term>
<term>Densité état électron</term>
<term>Spectre absorption</term>
<term>Calcul ab initio</term>
<term>Méthode fonctionnelle densité</term>
<term>Calcul APW</term>
<term>Approximation densité locale</term>
<term>Bande interdite</term>
<term>Fonction diélectrique</term>
<term>Indium Silicate</term>
<term>Indium Germanate</term>
<term>Indium Stannate</term>
<term>Pyrochlores</term>
<term>Semiconducteur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Electronic optical properties of In
<sub>2</sub>
X
<sub>2</sub>
O
<sub>7</sub>
(X = Si, Ge, Sn) compounds were calculated using density functional theory (DFT) calculation based on full potential linear augmented plane wave (FPLAPW). Four schemes LDA, GGA, EVGGA and mBJ were used to solve exchange correlation factor. The calculations of In
<sub>2</sub>
X
<sub>2</sub>
O
<sub>7</sub>
show that mBJ give better band splitting. The band structure of In
<sub>2</sub>
Ge
<sub>2</sub>
O
<sub>7</sub>
show an indirect band gap (X → I') of about 3.55 eV while In
<sub>2</sub>
Si
<sub>2</sub>
O
<sub>7</sub>
and In
<sub>2</sub>
Sn
<sub>2</sub>
O
<sub>7</sub>
exhibit direct band gap (I' → I') of 5.59 eV and 2.44 eV. The frequency dependent dielectric functions of In
<sub>2</sub>
X
<sub>2</sub>
O
<sub>7</sub>
compounds show the highest transparency at the infrared (IR) region. The In
<sub>2</sub>
Si
<sub>2</sub>
O
<sub>7</sub>
and In
<sub>2</sub>
Ge
<sub>2</sub>
O
<sub>7</sub>
are broad band semiconductors starting from ultraviolet (UV) region while In
<sub>2</sub>
Sn
<sub>2</sub>
O
<sub>7</sub>
start from visible region. The reflectivity spectra shows that In
<sub>2</sub>
X
<sub>2</sub>
O
<sub>7</sub>
compounds are suitable for antireflection coating layer in solar cells and filters in far UV region. As In
<sub>2</sub>
Si
<sub>2</sub>
O
<sub>7</sub>
and In
<sub>2</sub>
Sn
<sub>2</sub>
O
<sub>7</sub>
are a direct band gap material, that make them suitable for light emitting diodes (LED's). In
<sub>2</sub>
Si
<sub>2</sub>
O
<sub>7</sub>
is suitable for UV light while In
<sub>2</sub>
Sn
<sub>2</sub>
O
<sub>7</sub>
is fit to emit green, blue and violet light. The present work provides information about variation of the electronic and optical properties by replacing Si by Ge and by Sn in the pyrochlore oxide which helps to understand the electronic and optical properties of this group of compounds.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0256</s0>
</fA01>
<fA03 i2="1">
<s0>Comput. mater. sci.</s0>
</fA03>
<fA05>
<s2>78</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electronic structure and optical properties of In
<sub>2</sub>
X
<sub>2</sub>
O
<sub>7</sub>
(X = Si, Ge, Sn) from direct to indirect gap: An ab initio study</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RESHAK (A. H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SALEEM AYAZ KHAN</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Complex Systems, FFPW. CENAKVA, University of South Bohemia</s1>
<s2>CB, Nove Hrady 37333</s2>
<s3>CZE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis</s1>
<s2>01007 Kangar, Perlis</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>91-97</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26032</s2>
<s5>354000505822620130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>38 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0308386</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Computational materials science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Electronic optical properties of In
<sub>2</sub>
X
<sub>2</sub>
O
<sub>7</sub>
(X = Si, Ge, Sn) compounds were calculated using density functional theory (DFT) calculation based on full potential linear augmented plane wave (FPLAPW). Four schemes LDA, GGA, EVGGA and mBJ were used to solve exchange correlation factor. The calculations of In
<sub>2</sub>
X
<sub>2</sub>
O
<sub>7</sub>
show that mBJ give better band splitting. The band structure of In
<sub>2</sub>
Ge
<sub>2</sub>
O
<sub>7</sub>
show an indirect band gap (X → I') of about 3.55 eV while In
<sub>2</sub>
Si
<sub>2</sub>
O
<sub>7</sub>
and In
<sub>2</sub>
Sn
<sub>2</sub>
O
<sub>7</sub>
exhibit direct band gap (I' → I') of 5.59 eV and 2.44 eV. The frequency dependent dielectric functions of In
<sub>2</sub>
X
<sub>2</sub>
O
<sub>7</sub>
compounds show the highest transparency at the infrared (IR) region. The In
<sub>2</sub>
Si
<sub>2</sub>
O
<sub>7</sub>
and In
<sub>2</sub>
Ge
<sub>2</sub>
O
<sub>7</sub>
are broad band semiconductors starting from ultraviolet (UV) region while In
<sub>2</sub>
Sn
<sub>2</sub>
O
<sub>7</sub>
start from visible region. The reflectivity spectra shows that In
<sub>2</sub>
X
<sub>2</sub>
O
<sub>7</sub>
compounds are suitable for antireflection coating layer in solar cells and filters in far UV region. As In
<sub>2</sub>
Si
<sub>2</sub>
O
<sub>7</sub>
and In
<sub>2</sub>
Sn
<sub>2</sub>
O
<sub>7</sub>
are a direct band gap material, that make them suitable for light emitting diodes (LED's). In
<sub>2</sub>
Si
<sub>2</sub>
O
<sub>7</sub>
is suitable for UV light while In
<sub>2</sub>
Sn
<sub>2</sub>
O
<sub>7</sub>
is fit to emit green, blue and violet light. The present work provides information about variation of the electronic and optical properties by replacing Si by Ge and by Sn in the pyrochlore oxide which helps to understand the electronic and optical properties of this group of compounds.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70A20N</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H20C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Structure bande</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Band structure</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Densité état électron</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Electronic density of states</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Spectre absorption</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Absorption spectra</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Calcul ab initio</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Ab initio calculations</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Calcul APW</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>APW calculations</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Approximation densité locale</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Local density approximation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Aproximación densidad local</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Fonction diélectrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Dielectric function</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Indium Silicate</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium Silicates</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium Germanate</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium Germanates</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium Stannate</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium Stannates</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Pyrochlores</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Pyrochlore type compound</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Pirocloros</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>17</s5>
</fC03>
<fN21>
<s1>294</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000D69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0308386
   |texte=   Electronic structure and optical properties of In2X2O7 (X = Si, Ge, Sn) from direct to indirect gap: An ab initio study
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024